# Area & Circumference of Circles Song

## Math Songs

So let’s start with a given point, we’ll call it Point A

From here how do we make a geometric circle shape?

You pick a point here, draw a dot, and then measure

The distance of your dot to our Point A circle center

Now keep on plotting points, that same distance away

Just keep plotting and plotting until we’ve got our full circle shape

Ok your circle’s looking fine, now for some terms to define it

Let’s learn area, diameter, circumference, and what PI is

And start with area

Then the diameter

And how about that circumference

And PI equals 3.14 plus more

Alright so back to point A, our center as we discussed

The distance to the edge of the circle is the radius

And if we extend that line across the full length of the circle

Then we use a D and call this the diameter

But how about the distance all the way around the edge

Here we use the letter C, and call this one the circumference

To find this we use C = D times PI

Or 2(PI) times R if the radius is all that you can find

Alright, so what does this PI number mean?

Ratio of a circle’s circumference to diameter, it’s always

3.141592653589793238462643383279502884197

So y’all witnessed from this exhibit that this Pi number’s infinite

It just goes on, on and on, an irrational number that never ends

Ok let’s say your radius is 6

What would be the calculation of the circumference?

So two times PI times your radius of 6

Is 37.69, but remember it’s approximate

The area’s the space the circle takes up on the surface

Area is (PI) R squared an equation of importance

Back to our example, a radius of 6

You’d square it, six times six equals 36

Multiply that times PI and we’ve got our solution

Area is 113.097

Coming Soon!